10,036 research outputs found

    Neutrino Induced 4He Break-up Reaction -- Application of the Maximum Entropy Method in Calculating Nuclear Strength Function

    Full text link
    The maximum entropy method is examined as a new tool for solving the ill-posed inversion problem involved in the Lorentz integral transformation (LIT) method. As an example, we apply the method to the spin-dipole strength function of 4He. We show that the method can be successfully used for inversion of LIT, provided the LIT function is available with a sufficient accuracy.Comment: 5 pages, 2 figures. Poster presented by TM at the International Workshop on Neutrino-Nucleus Interaction in the Few-GeV Region (NuInt15), Novenber 16-21 2015, Osaka, Japa

    String tension and glueball masses of SU(2) QCD from perfect action for monopoles and strings

    Get PDF
    We study the perfect monopole action as an infrared effective theory of SU(2) QCD. It is transformed exactly into a lattice string model. Since the monopole interactions are weak in the infrared SU(2) QCD, the string interactions become strong. The strong coupling expansion of string model shows the quantum fluctuation is small. The classical string tension is estimated analytically, and we see it is very close to the quantum one in the SU(2) QCD. We also discuss how to calculate the glueball mass in our model.Comment: LATTICE99(Confinement), 3 pages and 1 EPS figure

    Dust properties in the cold and hot gas phases of the ATLAS3D early-type galaxies as revealed by AKARI

    Full text link
    The properties of the dust in the cold and hot gas phases of early-type galaxies (ETGs) are key to understand ETG evolution. We thus conducted a systematic study of the dust in a large sample of local ETGs, focusing on relations between the dust and the molecular, atomic, and X-ray gas of the galaxies, as well as their environment. We estimated the dust temperatures and masses of the 260 ETGs from the ATLAS3D survey, using fits to their spectral energy distributions primarily constructed from AKARI measurements. We also used literature measurements of the cold (CO and HI) and X-ray gas phases. Our ETGs show no correlation between their dust and stellar masses, suggesting inefficient dust production by stars and/or dust destruction in X-ray gas. The global dust-to-gas mass ratios of ETGs are generally lower than those of late-type galaxies, likely due to dust-poor HI envelopes in ETGs. They are also higher in Virgo Cluster ETGs than in group and field ETGs, but the same ratios measured in the central parts of the galaxies only are independent of galaxy environment. Slow-rotating ETGs have systematically lower dust masses than fast-rotating ETGs. The dust masses and X-ray luminosities are correlated in fast-rotating ETGs, whose star formation rates are also correlated with the X-ray luminosities. The correlation between dust and X-rays in fast-rotating ETGs appears to be caused by residual star formation, while slow-rotating ETGs are likely well evolved, and thus exhausting their dust. These results appear consistent with the postulated evolution of ETGs, whereby fast-rotating ETGs form by mergers of late-type galaxies and associated bulge growth, while slow-rotating ETGs form by (dry) mergers of fast-rotating ETGs. Central cold dense gas appears to be resilient against ram pressure stripping, suggesting that Virgo Cluster ETGs may not suffer strong related star formation suppression.Comment: 18 pages, 7 figures, accepted for publication in A&

    Central retinal vein occlusion in hypertensive patients with chronic hepatitis C treated with interferon alpha and ribavirin

    Get PDF
    ArticleJAPANESE JOURNAL OF OPHTHALMOLOGY. 52(6):511-513 (2008)journal articl

    Winding Number in String Field Theory

    Full text link
    Motivated by the similarity between cubic string field theory (CSFT) and the Chern-Simons theory in three dimensions, we study the possibility of interpreting N=(\pi^2/3)\int(U Q_B U^{-1})^3 as a kind of winding number in CSFT taking quantized values. In particular, we focus on the expression of N as the integration of a BRST-exact quantity, N=\int Q_B A, which vanishes identically in naive treatments. For realizing non-trivial N, we need a regularization for divergences from the zero eigenvalue of the operator K in the KBc algebra. This regularization must at same time violate the BRST-exactness of the integrand of N. By adopting the regularization of shifting K by a positive infinitesimal, we obtain the desired value N[(U_tv)^{\pm 1}]=\mp 1 for U_tv corresponding to the tachyon vacuum. However, we find that N[(U_tv)^{\pm 2}] differs from \mp 2, the value expected from the additive law of N. This result may be understood from the fact that \Psi=U Q_B U^{-1} with U=(U_tv)^{\pm 2} does not satisfy the CSFT EOM in the strong sense and hence is not truly a pure-gauge in our regularization.Comment: 20 pages, no figures; v2: references added, minor change

    On the effect of solar particles over the polar upper atmosphere

    Get PDF
    It has been reported that the abundance of nitrates in the polar region shows an 11 year periodicity which is clearly connected to solar activity. In this paper, we investigate whether or not this variation in nitrates can be explained by solar proton events (SPE) using data of the variation in galactic cosmic rays (GCR) over two solar cycles. As the result of our analysis, it would appear that SPE do not play a major role in producing the year-to-year variability in nitrate abundance in the polar region over the 11 year solar cycle. We have found that, if the short wave length (≤ 300 nm) radiation from the Sun varies by ∼ 0.1% over the 11 year solar cycle, the variation in nitrates can be explained naturally. The explanation requires that the intensity of GCR should increase to about 3000 times its present level. It would be useful to explore whether or not our planet has been exposed to such strong fluxes of GCR as a consequence of supernova explosions in the past

    Proton-induced magnetic order in carbon: SQUID measurements

    Full text link
    In this work we have studied systematically the changes in the magnetic behavior of highly oriented pyrolytic graphite (HOPG) samples after proton irradiation in the MeV energy range. Superconducting quantum interferometer device (SQUID) results obtained from samples with thousands of localized spots of micrometer size as well on samples irradiated with a broad beam confirm previously reported results. Both, the para- and ferromagnetic contributions depend strongly on the irradiation details. The results indicate that the magnetic moment at saturation of spots of micrometer size is of the order of 10−1010^{-10} emu.Comment: Invited contribution at ICACS2006 to be published in Nucl. Instr. and Meth. B. 8 pages and 6 figure

    Induced Magnetic Ordering by Proton Irradiation in Graphite

    Full text link
    We provide evidence that proton irradiation of energy 2.25 MeV on highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism. Measurements performed with a superconducting quantum interferometer device (SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering is stable at room temperature.Comment: 3 Figure
    • …
    corecore